A SURVEY OF CHAOS EMBEDDED META-HEURISTIC ALGORITHMS
Authors
Abstract:
This article presents a comprehensive review of chaos embedded meta-heuristic optimization algorithms and describes the evolution of this algorithms along with some improvements, their combination with various methods as well as their applications. The reported results indicate that chaos embedded algorithms may handle engineering design problems efficiently in terms of precision and convergence and, in most cases they outperform the results presented in the previous works. The main goal of this paper is to providing useful references to fundamental concepts accessible to the broad community of optimization practitioners.
similar resources
A Survey on Meta-Heuristic Global Optimization Algorithms
Optimization has been an active area of research for several decades. As many real-world optimization problems become increasingly complex, better optimization algorithms are always needed. Recently, metaheuristic global optimization algorithms have become a popular choice for solving complex and intricate problems, which are otherwise difficult to solve by traditional methods. In the present s...
full textA Performance Survey of Meta-Heuristic And Brute-Force Search Algorithms to Cryptanalysis The SDES Encryption Algorithm
For many years, cryptanalysis has been considered as an attractive topic in jeopardizing the security and resistance of an encryption algorithm. The SDES encryption algorithm is a symmetric cryptography algorithm that performs a cryptographic operation using a crypt key. In the world of encryption, there are many search algorithms to cryptanalysis. In these researches, brute force attack algori...
full textPortfolio Optimization by Means of Meta Heuristic Algorithms
Investment decision making is one of the key issues in financial management. Selecting the appropriate tools and techniques that can make optimal portfolio is one of the main objectives of the investment world. This study tries to optimize the decision making in stock selection or the optimization of the portfolio by means of the artificial colony of honey bee algorithm. To determine the effect...
full textSurvey of Meta-Heuristic Algorithms for Deep Learning Training
Deep learning (DL) is a type of machine learning that mimics the thinking patterns of a human brain to learn the new abstract features automatically by deep and hierarchi‐ cal layers. DL is implemented by deep neural network (DNN) which has multihidden layers. DNN is developed from traditional artificial neural network (ANN). However, in the training process of DL, it has certain inefficiency d...
full textA comparative study of two meta-heuristic algorithms in optimizing cost of reinforced concrete segmental lining
In this work, we tried to automatically optimize the cost of the concrete segmental lining used as a support system in the case study of Mashhad Urban Railway Line 2 located in NE Iran. Two meta-heuristic optimization methods including particle swarm optimization (PSO) and imperialist competitive algorithm (ICA) were presented. The penalty function was used for unfeasible solutions, and the seg...
full textAccuracy Improvement of Mood Disorders Prediction using a Combination of Data Mining and Meta-Heuristic Algorithms
Introduction: Since the delay or mistake in the diagnosis of mood disorders due to the similarity of their symptoms hinders effective treatment, this study aimed to accurately diagnose mood disorders including psychosis, autism, personality disorder, bipolar, depression, and schizophrenia, through modeling and analyzing patients' data. Method: Data collected in this applied developmental resear...
full textMy Resources
Journal title
volume 3 issue 4
pages 617- 633
publication date 2013-10
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023